Simplified Coalgebraic Trace Equivalence
نویسندگان
چکیده
The analysis of concurrent and reactive systems is based to a large degree on various notions of process equivalence, ranging, on the so-called lineartime/branching-time spectrum, from fine-grained equivalences such as strong bisimilarity to coarse-grained ones such as trace equivalence. The theory of concurrent systems at large has benefited from developments in coalgebra, which has enabled uniform definitions and results that provide a common umbrella for seemingly disparate system types including non-deterministic, weighted, probabilistic, and game-based systems. In particular, there has been some success in identifying a generic coalgebraic theory of bisimulation that matches known definitions in many concrete cases. The situation is currently somewhat less settled regarding trace equivalence. A number of coalgebraic approaches to trace equivalence have been proposed, none of which however cover all cases of interest; notably, all these approaches depend on explicit termination, which is not always imposed in standard systems, e.g. LTS. Here, we discuss a joint generalization of these approaches based on embedding functors modelling various aspects of the system, such as transition and braching, into a global monad; this approach appears to cover all cases considered previously and some additional ones, notably standard LTS and probabilistic labelled transition systems.
منابع مشابه
A Coalgebraic Foundation for Linear Time Semantics
We present a coalgebraic approach to trace equivalence semantics based on lifting behaviour endofunctors for deterministic action to Kleisli categories of monads for non-deterministic choice. In Set , this gives a category with ordinary transition systems as objects and with morphisms characterised in terms of a linear notion of bisimulation. The final object in this category is the canonical a...
متن کاملFinitary logics for coalgebras with branching
The purpose of this dissertation is to further previous work on coalgebras as infinite statebased transition systems and their logical characterisation with particular focus on infinite regular behaviour and branching. Finite trace semantics is well understood [DR95] for nondeterministic labelled transition systems, and has recently [Jac04, HJS06] been generalised to a coalgebraic level where m...
متن کاملGeneric Trace Semantics and Graded Monads
Models of concurrent systems employ a wide variety of semantics inducing various notions of process equivalence, ranging from linear-time semantics such as trace equivalence to branching-time semantics such as strong bisimilarity. Many of these generalize to system types beyond standard transition systems, featuring, for example, weighted, probabilistic, or game-based transitions; this motivate...
متن کاملTrace semantics via determinization for probabilistic transition systems
A coalgebraic definition of finite and infinite trace semantics for probabilistic transition systems has recently been given using a certain Kleisli category. In this paper this semantics is developed using a coalgebraic method which is an instance of general determinization. Once applied to discrete systems, this point of view allows the exploitation of the determinized structure by up-to tech...
متن کاملFinal Semantics for Decorated Traces
In concurrency theory, various semantic equivalences on labelled transition systems are based on traces enriched or decorated with some additional observations. They are generally referred to as decorated traces, and examples include ready, failure, trace and complete trace equivalence. Using the generalized powerset construction, recently introduced by a subset of the authors [13], we give a c...
متن کامل